
Towards a Formal Approach to
Mobile Cloud Computing

Michele Amoretti
SITEIA.PARMA

Univ. of Parma, Italy

michele.amoretti@unipr.it

Alessandro Grazioli and Francesco Zanichelli
Dep. of Information Engineering

Univ. of Parma, Italy

grazioli@ce.unipr.it, francesco.zanichelli@unipr.it

Valerio Senni and Francesco Tiezzi
IMT Advanced Studies Lucca, Italy

valerio.senni@imtlucca.it

francesco.tiezzi@imtlucca.it

Abstract—Mobile cloud computing (MCC) is an emerging
paradigm to transparently provide support for demanding tasks
on resource-constrained mobile devices by relying on the in-
tegration with remote cloud services. Research in this field is
tackling the multiple conceptual and technical challenges (e.g.,
how and when to offload) that are hindering the full realization
of MCC. The NAM framework is a general tool to describe
networks of hardware and software autonomic entities, providing
or consuming services or resources, that can be applied to MCC
scenarios. In this paper, we focus on NAM’s features related
to the key aspects of MCC, in particular those concerning
code mobility capabilities and autonomic offloading strategies.
Our first contribution is the definition of a restricted set of
mobility actions supporting MCC. The second contribution is
a formal semantics for those actions, which allows us to better
understand the behavior of MCC systems and paves the way for
the application of formal reasoning techniques. As an outcome,
we also derive a more precise formalization of the core NAM
features, which may contribute to further development of that
framework and the related middleware.

I. INTRODUCTION

Mobile Cloud Computing (MCC) is an emerging paradigm
for transparent elastic augmentation of mobile devices capa-
bilities, exploiting ubiquitous wireless access to cloud storage
and computing resources [19]. MCC aims at increasing the
range of resource intensive tasks supported by mobile devices
with no or limited effects on their battery autonomy. While the
ever increasing communication capabilities available in mobile
devices make viable offloading computation and storage to
remote services, several issues and challenges are hindering
the full realization of MCC. Among those, significant are the
lack of an agreed upon conceptual model for MCC systems, the
fact that most of current applications are statically partitioned,
the possibility of rapid changes in network conditions and local
resource availability, as well as privacy and security concerns
related to storing user data on a remote cloud. Moreover, as
multiple offloading approaches are possible [18] depending on
the task and context, autonomic computing techniques appear
promising to increase the robustness and flexibility of MCC
systems [9]. In particular, autonomic policies grounded on
continuous resource and connectivity monitoring may help au-
tomate the context-aware selection and operation of offloading
procedures.

The Networked Autonomic Machine (NAM) framework [1]
is a general-purpose conceptual tool to describe distributed
autonomic systems, and it is suitable for MCC systems, as

it supports code and data mobility concepts. The Java imple-
mentation of a middleware based on NAM, called NAM4J,
has been recently enhanced with support for code mobility on
mobile platforms. However, for the purpose of reasoning on
MCC aspects, the middleware contains too low-level details
while the conceptual framework is too abstract.

The aim of this paper is to provide the NAM framework
with a formal base in terms of an operational semantics,
in order to fill the gap between its implementation and its
conceptual definition. In particular, we focus on those aspects
that are important for its adoption in MCC scenarios. For this
purpose, we use the Kernel Language for Agents Interaction
and Mobility (KLAIM) [11], which is a linguistic formalism
specifically designed to model distributed systems consisting
of several mobile components which interact through multiple
distributed shared memories, called tuple spaces. Its primi-
tives allow programs to distribute/retrieve data and processes
to/from the nodes of a network, thus enabling data and code
mobility. The formalization process contributed to a clarifica-
tion and refinement of the NAM framework with specific focus
on MCC features. In addition, we have analyzed many typical
scenarios arising in MCC applications, from which we have
identified and formalized five different mobility primitives that
can be employed in high-level design of MCC applications.

This formalization effort provides a common conceptual
model towards: (i) a better understanding of MCC issues,
(ii) the verification of relevant properties of MCC systems, and
(iii) formal-based design of autonomic context-aware decision
strategies.

The remainder of this paper is structured as follows.
Section II presents a simplified description of what a NAM
is, tailored to our formalization purpose. Section III describes
NAM at work on a typical case study from the MCC domain.
Section IV outlines the main features of KLAIM, which are
used in Section V to define a formal semantics of NAM.
Section VI describes related work regarding MCC, autonomic
middleware, code migration, and their formalization. Finally,
Section VII reports our conclusions and describes future work.

II. THE NAM FRAMEWORK

A system of Networked Autonomic Machines (NAMs) is
a loosely connected network of hardware/software entities,
which provide or consume services or resources. In this paper
we focus on specific MCC aspects, like data and code mobility,
and thus we only consider the set of NAM concepts devoted

2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/14 $31.00 © 2014 IEEE

DOI 10.1109/PDP.2014.42

743

to address them. Other NAM concepts, such as resource mon-
itoring, service composition, interface compatibility, are also
relevant for a comprehensive description of MCC scenarios,
but are not MCC-specific. Therefore, we decided to omit them,
in order to focalize on mobility aspects. We plan to include
also those aspects in a future extension of the NAM framework
formalization.

In a NAM network, each device can host one or more
NAMs. Roughly, a NAM is a container of data (both appli-
cation data and awareness data, such as sensor readings and
context events) and computational entities (service threads ex-
ploiting functionalities provided by libraries called functional
modules). More formally, a NAM is represented as a tuple
nam = 〈nid,R, F, P 〉, where nid is the NAM identifier, R
is a set of physical resources, F = {f1, . . . , fm} is a set of
functional modules (FMs), and P is a set of (self-management)
policies. We do not consider data as a resource and we
assume it is always stored within FMs and moved accordingly.
More general models including data in NAMs are out of the
scope and purpose of this paper, although we do not envisage
any issue in extending our formalization in such a direction.
The state of a NAM consists of the sets R, representing
available resources, and F describing FMs that currently reside
on it. Autonomic policies are a crucial means to support
MCC, since they alleviate the mobile users from manually
starting/stopping applications, or application modules, when
their execution becomes too demanding in terms of local
resources. Specifically, a policy is an Event-Condition-Action
rule of the form (ev, co, act): the occurrence of an event ev
triggers the evaluation of the corresponding condition co and,
in case of positive evaluation, the action act is executed.

A FM is represented as a tuple f = 〈fid , S, Pf , D, T 〉,
where fid is the functional module identifier, S is a set of
bindings from service names to methods of f implementing
them, Pf is a tuple containing functional and self-management
policies, D is a set of data available to the module, and
T is a set of threads currently run by the module itself.
We consider a service as an entry point for a FM, which
has the role of aggregating functions and data to provide
computational tasks. In other words, functions hosted by FMs
are accessed by other NAMs or FMs via services. To this
purpose, when a FM receives a service request, it identifies
(via bindings in S) the corresponding local/remote method
and subsequently creates a thread implementing it. Events are
another form of entry points, but they differ from services
since a service request triggers a thread execution, while an
event triggers a policy evaluation and, possibly, a functional or
self-management action. In fact, while services are specifically
devised to support client-server communication, events also
enable publish-subscribe interactions. Specifically, FM policies
Pf = 〈Po, Pl, Pr〉 are structured in three parts: Po are the
on-site policies, active when the module is not offloaded,
while (Pl, Pr) are the policies activated in the local and
remote NAMs, respectively, when the module is offloaded.
The need of having local and remote policies in offloading
is motivated by the need of evaluating events both locally
and remotely. An example of local event is the detection
of decreasing connection quality, triggering the recovery of
the module. Similarly, a remote event can arise on lack of
resources, triggering the decision of sending the module back
to the owner.

f
s ���

f
s ���

f
s ���

f
s ���

f

f
s ���

f
s ���

f

f

�������

�	

���

��

��������
����

��

��

��

nam�

nam�

nam�

nam�

nam�

nam�

nam�

nam�

nam�

��

��

	������

��
����
 ��

����� ! �"#$%"#�$

Figure 1. Allowed mobility actions. Capabilities of source/destination
NAMs are indicated by the following tags: (o)=offload, (b)=back, (g)=go,
(m)=migrate, and (c)=copy

A. Mobility Actions

Mobility is a fundamental aspect of NAM networks, since
it allows a dynamic reconfiguration of the system by moving
FMs among nodes. We allow for five different mobility actions:
offload, back, go, migrate, and copy. Fig. 1 summarizes the
four scenarios where these actions can be used.

In the first scenario, nam1 is lacking resources (such as
battery or cpu) so it decides, according to its internal policies,
to move the code of FM f to nam2 through an offload action.
As an effect of this action, the resource-consuming elements
of f (i.e., data D and running threads T) are moved to nam2

and are regulated by specific policies Pr (while, from now
on, policies Pl are activated and enforced locally to nam1).
Therefore, f stops consuming resources of the source and starts
consuming the ones of the destination. The entry points of f
(i.e., the service specified in S) are, instead, left on nam1.
This choice is motivated by the need of full transparency
of offloading with respect to local and remote modules that
use services of f . This operation requires S on nam1 to be
modified to redirect service requests on nam2. If necessary,
nam1 can request to terminate the offloading of f by executing
a back action, which moves back the functional module f to
nam1 and updates S and active policies consistently. Finally,
in the case nam2 decides it cannot provide hosting for f any
longer (e.g. nam2 is a cloud service and nam1 is running out
of credit), it can execute a go action which, again, moves back
the functional module f to nam1.

In the second scenario we consider an autonomic functional
module f (e.g. a crawler). In this case, the whole functional
module f (including services and service bindings) can request
to be moved to another NAM. The container nam1 moves f
to nam2 by executing an action migrate. After this action, no
part of f (including services) is available on nam1. Clearly,
this action requires to update the set F1 of functional modules

744

on nam1 as well as the set F2 of functional modules on nam2.

In the third scenario we consider events such as down-
loading applications or libraries. After a request of nam2 for
module f , nam1 copies it on nam2 through a copy action.
As a consequence, nam2 can access the services of f locally,
without relying on nam1. This action modifies the set F2 of
functional modules on nam2.

Finally, in the fourth scenario, we consider operations that
move offloaded modules. A typical case can be the need
of moving an offloaded module from a NAM to another to
perform load-balancing. In the figure, nam2 hosts a module
offloaded by nam1 and decides it cannot offer offloading
any more. Thus it moves f to nam3 through a go action.
This operation moves all elements of f in nam2 to nam3

and updates S on nam1 (the update of these bindings is
represented in Fig. 1 by the dashed lines).

Note that, in actions back, go, migrate, and offload, the
execution of threads T of the module f is suspended and, then,
recovered in the remote location. Similarly, local data D of the
module is moved to the remote location. On the contrary, in a
copy action, we expect f has no track of previous execution
on nam1. Therefore, the sets D of data and T of threads are
initially empty in nam2.

A mobility action can be executed by a NAM on a local
FM, for actions copy, go, migrate, and offload, and on a
remote FM, for action back.

Notably, we currently do not allow to move services, unless
the whole module is moved, since we do not envisage any
benefit in the considered MCC application scenarios. Anyway,
moving services would be a much lighter operation because it
consists essentially in moving/copying just the service name
and updating the corresponding bindings.

III. CASE STUDY

In this section, we show the (fragment of) NAM frame-
work, described in Section II and formalized in Section V, at
work in a simple, but realistic, MCC case study. The aim is
to clarify the role of mobility actions and, in particular, how
policies permit to separate the decision-support logic from the
code implementing mobility actions.

Consider an Augmented Execution scenario [18] in which
a mobile device, hosting a NAM, is running short of a certain
resource (e.g., battery power or CPU cycles), while a FM f is
performing a demanding task (such as face recognition, video
processing, or data mining). We expect an autonomic device
with MCC support (e.g., a subscription to a cloud service) to
react accordingly to the situation so that the task is completed
successfully, although local resources are insufficient, and
without requiring user intervention. In our scenario, a possible
decision is to offload the demanding task for execution on the
cloud service.

It is crucial to identify the responsibility of these decisions
and the mechanisms to enact them. A reasonable solution
within the NAM framework is to rely on self-management
policies. These are entitled of monitoring events related to
the state of the device in order to maintain certain quality
of service or safety conditions. Let us now start considering

the role of policies of the functional module f in our specific
example. Policies of f are 〈Po, Pl, Pr〉, where:

Po = {(cpuLoadUpdate, load > 70%, offload(fid)),

(batteryChargeUpdate, charge ≤ 30%, offload(fid))}
Pl = {(wifiConnectionReport, quality < 4, back(fid))}
Pr = {(serviceQualityReport, quality < 7, go(fid))}

with fid being the identifier of f . On-site policies Po monitor
the availability of CPU and battery resources and, if necessary,
trigger the offloading action to reduce resource consumption.

Once offloading is completed, the policy handler is split
into a local and a remote handler (executing, respectively, Pl

and Pr). The former monitors the quality of the wireless con-
nection and decides (possibly, by enacting some forecasting)
when it is necessary to request the module back because the
connection has become unreliable and in order not to loose the
computation performed so far. The latter resides on the guest
NAM and monitors the quality of the computation service.
If not satisfactory (e.g. not sufficiently fast), offloading may
become a disadvantage and the module may decide to go to
another NAM, possibly its origin one.

Let us now consider the behavior of the remote cloud
service, which provides elastic resources to registered users
with a positive credit balance. The cloud service provides the
users one or more virtual machines (VMs) running a cloned
system image. The mobile device is allowed to offload f to a
cloned replica for remote execution, thus saving battery and
time, since the speedup factor of the cloud is higher. As already
mentioned, the offloading process is started on the mobile
device by policies of the functional module f . On the side
of NAMs hosted on virtual machines, policies perform other
monitoring tasks such as those described by the following
rules:

P = {(cpuLoadUpdate, load > 80%,LoadBalance),

(accountCreditReport fid , credit = 0, back(fid))}

where CPU load is monitored and, if too high, a re-balancing
action is executed, moving a functional module to another vir-
tual machine. Furthermore, for each hosted functional module
fid , the user credit is monitored and, if insufficient, the module
is sent back to the owner.

Figure 2 illustrates a possible interaction, among those al-
lowed by the policies described previously. In particular, nam1

is hosted on a mobile device and either on a cpuLoadUpdate
event or on a batteryChargeUpdate event the policies request
an offload action of module f . Therefore, the virtual machine
hosting nam2 accepts module f (it may be running other
modules). When offloading is complete, all the service requests
on nam1 that are dispatched to f are redirected to nam2 for
evaluation.

We assume that the VM hosting nam2 becomes over-
loaded, which triggers the action moving a functional module
to another NAM. This may cause in the underlying cloud
middleware the creation of a new virtual machine, but these
details are out of the scope of the NAM framework. In

745

Figure 2. A possible evolution of the scenario described in the case study.

Figure 2, this balancing operation is illustrated as a go action
moving f to nam3.

It may be the case that the user moves and the wireless
connection becomes weaker and unreliable. This is detected by
the remote policy handler, as discussed previously. Similarly,
the virtual machine policy can also detect that the user has no
residual credit and the functional module f cannot be hosted
any longer. In both cases f must be sent back to the owner
nam1, so that the execution can continue locally. Also this
event is illustrated in Figure 2, by showing that f goes from
nam3 back to nam1, on the mobile device.

IV. KLAIM

In this section, we summarize the key features of the
formal language KLAIM. It has been specifically designed to
provide programmers with primitives for handling physical
distribution, scoping and mobility of processes. Although
KLAIM is based on process algebras, it makes use of Linda-
like asynchronous communication and models distribution via
multiple shared tuple spaces.

Linda [14] is a coordination paradigm rather than a lan-
guage, since it only provides a set of coordination primitives.
It relies on the so-called generative communication paradigm,
which decouples the communicating processes both in space
and time. Communication is achieved by sharing a common
tuple space, where processes insert, read and withdraw tuples.
The data retrieving mechanism uses pattern-matching to find
the required data in the tuple space.

KLAIM enriches Linda primitives with explicit information
about the locality where processes and tuples are allocated.
KLAIM syntax1 is shown in Table I.

1We use a version of KLAIM enriched with high-level features, such
as assignments, standard control flow constructs and non-blocking retrieval
actions, that simplify the modeling task. All such constructs are directly
supported by KLAIM related tools (such as, e.g., the analysis tool SAM [20]).

Table I. KLAIM SYNTAX

(Nets) N ::= s ::ρ C
∣
∣ N1 ‖ N2

∣
∣ (νs)N

(Components) C ::= P
∣
∣ 〈t〉 ∣

∣ C1 |C2

(Processes) P ::= a
∣
∣ X

∣
∣ A(p1, . . . , pn)

∣
∣ P1 ;P2

∣
∣ P1 |P2

∣
∣ P1 + P2

∣
∣ if (e) then {P1} else {P2}
∣
∣ while (e) {P}

(Actions) a ::= in(T)@�
∣
∣ read(T)@�

∣
∣ out(t)@�

∣
∣ inp(T)@�

∣
∣ readp(T)@�

∣
∣ eval(P)@�

∣
∣ newloc(s)

∣
∣ x := e

(Tuples) t ::= e
∣
∣ �

∣
∣ P

∣
∣ t1, t2

(Templates) T ::= e
∣
∣ �

∣
∣ ?x

∣
∣ ?l

∣
∣ ?X

∣
∣ T1, T2

Nets N are finite collections of nodes composed by means
of the parallel operator N1 ‖ N2. It is possible to restrict the
scope of a name s by using the operator (νs)N : in a net of
the form N1 ‖ (νs)N2, the effect of the operator is to make s
invisible from within N1.

Nodes s ::ρ C have a unique locality name s (i.e. their
network address) and an allocation environment ρ, and host a
set of components C. The allocation environment provides a
name resolution mechanism by mapping locality variables l
(i.e., aliases for addresses), occurring in the processes hosted
in the corresponding node, into localities s. The distinguished
locality variable self is used by processes to refer to the
address of their current hosting node. Components C are finite
plain collections of processes P and evaluated tuples 〈t〉,
composed by means of the parallel operator C1 |C2.

Processes P are the KLAIM active computational units,
which can be executed concurrently either at the same locality
or at different localities. They are built up from basic actions
a, process variables X , and process calls A(p1, . . . , pn), by
means of sequential composition P1;P2, parallel composition
P1 |P2, non-deterministic choice P1 + P2, conditional choice
if (e) then {P1} else {P2}, iteration while (e) {P}, and
(possibly recursive) process definition A(f1, . . . , fm) � P ,
where A denotes a process identifier, while fi and pj denote
formal and actual parameters, respectively. Hereafter, we do
not explicitly represent process definitions (and their migration
to make migrating processes complete), and assume that they
are available at any locality of a net. Notably, e ranges over
expressions, which contain basic values (booleans, integers,
strings, floats, etc.) and value variables x, and are formed
by using the standard operators on basic values and the non-
blocking retrieval actions inp and readp (explained below).
In the rest of this section, we will use the notation � to range
over locality names s and locality variables l.

During their execution, processes perform some basic ac-
tions. Actions in(T)@� and read(T)@� are retrieval actions
and permit to withdraw/read data tuples from the tuple space
hosted at the (possibly remote) locality �: if a matching tuple
is found, one is non-deterministically chosen, otherwise the
process is blocked. They exploit templates as patterns to select
tuples in shared tuple spaces. Templates are sequences of actual
and formal fields, where the latter are written ?x, ?l or ?X

746

and are used to bind variables to values, locality names or
processes, respectively. Actions inp(T)@� and readp(T)@�
are non-blocking versions of the retrieval actions: namely,
during their execution processes are never blocked. Indeed,
if a matching tuple is found, inp and readp act similarly to
in and read, and additionally return the value true; otherwise,
they return the value false and the executing process does not
block. inp(T)@� and readp(T)@� can be used where either a
boolean expression or an action is expected (in the latter case,
the returned value is simply ignored). Action out(t)@� adds
the tuple resulting from the evaluation of t to the tuple space
of the target node identified by �, while action eval(P)@�
sends the process P for execution to the (possibly remote)
node identified by �. Both out and eval are non-blocking
actions. Finally, action newloc creates new network nodes,
while action x := e assigns the value of e to x. Differently
from all the other actions, these latter two actions are not
indexed with an address because they always act locally.

V. KLAIM-BASED SEMANTICS FOR NAM

This section discusses how, from an operational point of
view, a NAM network can be defined in terms of a KLAIM

net. In particular, the aim of providing the semantics of the
NAM framework in terms of the KLAIM formal language
is to clarify the relationship among functional modules, their
related services and the underlying middleware. For the sake
of readability, in the this section we omit the target self from
KLAIM actions, writing e.g. in(T) in place of in(T)@self .

A NAM network consisting of a collection of NAMs
{nam1, . . . , namm} can be rendered in KLAIM as the fol-
lowing net:

nid1 ::ρ1
(C1

TS | C1
P) ‖ . . . ‖ nidm ::ρm

(Cm
TS | Cm

P)

where nidi is the identifier of nami and ρi = {self �→ nidi}.
Intuitively, each NAM 〈nid,R, F, P 〉 is modelled by a KLAIM

node with tuple space CTS and running processes CP .

The tuples stored in CTS represent data local to functional
modules in F , availability of resources in R, messages to
denote service requests or events, code of functional modules
in F , and commands to instrument the forms of mobility sup-
ported by the framework. We adopt the following convention
about tuples: the first field of each tuple is a tag string indi-
cating the tuple’s role; e.g., tuple 〈srvReq, sid, data, nidSRC〉
denotes a service request containing the identifier of the
requested service, input data and the identifier of the NAM
invoking the service.

The processes in CP , performing the computational tasks
and the self-management of the NAM, are defined as the
following parallel composition:

Disp | PMH | F1 | . . . | Fk

where:

• Disp is a dispatcher of service requests to the appro-
priate functional modules;

• PMH is the policy and mobility handler that is in
charge of enforcing the NAM policies P and executing
the mobility commands;

• Fj includes the processes modeling the j-th functional
module in F with identifier fid , i.e. the service handler
(SH) and the policy handler (PH) of the functional
module, and a number of threads (T), each of which
serving a specific service request:

SHfid | PHfid | T 1
fid | . . . | Th

fid

In the rest of this section, we provide some details on the
processes mentioned above.

A. NAM control

The process that models the service request dispatcher of
a NAM is defined as follows:
Disp =

in(srvReq, ?sid, ?data, ?nidSRC);

read(srvBinder, sid, ?fid , ?nidIMP);

if (nidIMP == self)

then{out(srvAssign, sid,fid , data, nidSRC)}
else {out(remoteSrvAssign, sid,fid , data, nidSRC)@nidIMP};

Disp

This process cyclically reads (and consumes) a service request,
determines the NAM hosting the functional module imple-
menting the service, and sends a service assignment to such
a NAM. More specifically, a service binder tuple of the form
〈srvBinder, sid,fid , nidIMP 〉, stored in the considered NAM,
is used to identify (via pattern-matching) the NAM nidIMP

providing the implementation of module fid exposing service
sid. Depending on whether nidIMP is the local NAM or not,
either a local service assignment (tagged by srvAssign) or a
remote one (tagged by remoteSrvAssign) is generated.

The process that models the policy and mobility handler
of a NAM is as follows:

PMH = MH +
∑

(ev,co,act)∈Pn

in(event, ev); if (co) then {Pact}; PMH

Mobility commands are dealt with by the mobility handler
(MH , illustrated in Sec. V-C), while policies by the policy
handler. The latter is rendered as a choice composition of the
processes modeling event-condition-action rules of the NAM
policies Pn. In particular, an event ev (retrieved by an in)
triggers the execution of the processes Pact, corresponding to
the action act, provided that condition co is satisfied.

B. FM control

Every FM F has a service handler SH fid that has two roles:
(1) to react to service assignments, by creating a thread that
serves the corresponding service request, and (2) to change
state accordingly to mobility requests.

The following KLAIM code models these behaviors:
SH fid =

in(srvAssign, ?sid,fid , ?data, ?nidSRC);

START THREAD(sid,fid , data, nidSRC);

SH fid

+ in(copySH,fid , ?nidDST); eval(SH fid)@nidDST ;

SH fid

+ in(migrateSH,fid , ?nidDST); eval(SH fid)@nidDST

+ in(offloadSH,fid , ?nidDST); eval(RSH fid)@nidDST ;

LSH fid

747

On arrival of a service assignment (srvAssign) for fid , the
service handler create a thread with parameters: the service
identifier sid, the module identifier fid , the data for the
computation and the client identifier nidSRC . We discuss code
for thread creation later on. In case of a copy request (copySH)
for fid to nidDST destination, the service handler copies itself
to nidDST by using the eval action and returns to its previous
state. In case of a migrate request (migrateSH), the service
handler behaves similarly, except that it stops its execution. An
offload request (offloadSH) behaves differently: it first starts a
remote service handler RSH fid at location nidDST and then
switches to execute a local service handler LSH fid . We now
introduce the code of these two processes:

LSH fid =

in(backSH,fid , ?nidDST);

out(remoteBackSH,fid , nidDST)@nidDST ;

SH fid

RSH fid =

in(remoteSrvAssign, ?sid,fid , ?data, ?nidSRC);

START THREAD(sid,fid , data, nidSRC);

RSH fid

+ in(remoteBackSH,fid ,)

+ in(goSH,fid , ?nidDST); eval(RSH fid)@nidDST

After offloading, service requests are forwarded to the remote
NAM nidDST . Therefore, the solely role of LSH fid is to
react to a back request (backSH) by informing the remote
NAM (by a remoteBackSH request) and returning to (normal)
state SH fid . On the other side, the remote service handler
RSH fid has three possible behaviors. The first reacts to a
(forwarded) remote service assignment (remoteSrvAssign), by
creating a thread to serve the request, and returns to its
initial state. The second receives a (forwarded) back request
(remoteBackSH) and terminates. The last behavior reacts to
a go request (goSH) to nidDST by creating a remote service
handler to location nidDST and terminating. Clearly, after a
go action, service requests are forwarded to the new NAM,
where the remote service handler is active.

Before discussing mobility actions in further detail in the
next section, we briefly illustrate how threads are created:

START THREAD(sid,fid , data, nidSRC) =

read(srvImpl, sid,fid , ?Code);

tid := getFreshId();

out(thread,fid , tid);

eval(Code(tid, data, nidSRC ,fid))

By using the service identifier sid, the implementation (Code)
of that service in the functional module fid is retrieved in
a tuple tagged by srvImpl. Then, a new thread identifier tid
is created and registered as a thread of fid . Finally, the
thread Code(tid, data, nidSRC ,fid) is executed. The thread
registration phase (with its unique id) is required to be able
to retrieve and move running threads of a functional module
when offload/migration is performed. We expect the thread to
know the identifier of the service client (nidSRC), to be able
to reply to it, and its identifier tid to unregister on completion
and to react on migration/offloading. We assume user code is
instrumented accordingly (and, possibly, automatically).

The policy handler PH fid executes policies similarly
to PMH , by using triples (ev, co, act) in the on-site pol-
icy Po of fid . Furthermore, it reacts to mobility ac-
tions identified by tuples with tag in {backPH,copyPH,
goPH,migratePH,offloadPH}. In particular, similarly to the
service handler, in the case of an offload request it first starts
a remote policy handler RPH fid (which executes the remote
policy PR) and then switches to execute a local policy handler
LPH fid (which executes the local policy PL). Due to lack of
space, we relegate the code of processes PH fid , RPH fid and
LPH fid to [2].

C. Mobility Handler

The mobility handler MH executes in mutual exclusion
with NAM policies. It is structured as follows:

MH = CH +MiH +OH + BH +GH

where CH is the copy action handler, MiH is the migrate
action handler, OH is the offload action handler, BH is the
back action handler, and GH is the go action handler. We
now illustrate the KLAIM code for the offload action handler,
then we briefly describe how the other actions are handled.
The interested reader can find the corresponding KLAIM code
in [2].

OH =

in(offloadReq, ?fid , ?nidDST);

out(offloaderNAM, fid, self)@nidDST ;

UPDATE BINDER(fid , nidDST);

MOVE IMPLEMENTATION (fid , nidDST);

TRANStoREM SRVASSIGN (fid , nidDST);

MOVE THREADS(fid , nidDST);

out(offloadSH,fid , nidDST);

out(offloadPH,fid , nidDST);

PMH

On arrival of an offload request (offloadReq) the handler first
informs the remote NAM nidDST that its NAM (self) is the
offload requester for functional module fid by adding a tuple
tagged by offloaderNAM. Then, it updates the binder for each
service in fid with the new information that the module is at
location nidDST . Afterward, it moves the implementation of
each service (that, is the code associated with each service in
the functional module) to nidDST . Each service assignment
which has not been served yet is translated into a remote
request and sent to nidDST . Threads are moved to nidDST

by creating a moveThread tuple for each thread identifier tid.
Finally, offload requests are sent to the service handler and to
the policy handler by using offloadSH and offloadPH requests,
respectively. We have seen in the previous section how SH fid

reacts to these requests. Finally, the control returns to PMH
where either a policy or a mobility request is handled.

The copy action handler CH , on arrival of a copy request
(copyReq), performs three operations: (1) it copies all binders
by setting the remote NAM as the fid location, (2) it copies the
implementations, and (3) it sends copy requests to the service
and policy handler by using copySH and copyPH.

The migrate action handler MiH , on arrival of a migrate
request (migrateReq), performs five actions: (1) it moves
all binders by setting the remote NAM as the fid location,

748

(2) it moves the implementations, (3) it moves the service
assignments, (4) it moves the threads, and (5) it sends migrate
requests to the service and policy handler by using migrateSH
and migratePH.

The back action handler BH , on arrival of a back request
(backReq), performs two operations: (1) it sends back requests
to the service and policy handler by using backSH and
backPH, and (2) it sends to the remote NAM a go request
with destination self .

Finally, the go action handler GH has two possible behav-
iors. The first is performed on the remote NAM, on arrival
of a go request (goReq): (1) it retrieves the identity of the
local NAM (using a tuple tagged by offloaderNAM), (2) sends
a notification (goNotification) to the local NAM with the
new location (NAM2) so that it can update service bindings
accordingly, (3) moves implementation and threads to the new
location, (4) if the new destination NAM2 is the originator
of the offload then it is indeed a back action, and it simply
translates remote service assignments to local ones, otherwise
it performs three sub-steps: (4.i) it informs NAM2 of the
offloader identity using the offloaderNAM tuple, (4.ii) it sends
go requests to the service and policy handler by using goSH
and goPH, and (4.iii) it moves remote (not yet served) service
assignments. The second behavior of GH is performed on the
local NAM and reacts to goNotification messages by updating
service binders to point to the new NAM (possibly, self).

VI. RELATED WORK

A. Mobile Cloud Computing

Many approaches to MCC have been proposed in the
literature. In [18], three reference MCC approaches are iden-
tified. They differ in the granularity of the offloading process
(ranging from device cloning to application partitioning and
migration), and in the degree of involvement of the Cloud.
With Augmented Execution, some or all of the tasks are
offloaded from the mobile device to the Cloud, where a cloned
system image of the device is running. The results from the
augmented execution are reintegrated upon completion. Elas-
tically Partitioned Applications can improve their performance
by delegating part of the application to remote execution on
a resource-rich cloud infrastructure. A Spontaneous Mobile
Cloud represents a group of mobile devices, connected by
means of an infrastructure (WiFi, 3G, etc.) or in ad hoc mode,
that serve as a cloud computing provider by exposing their
computing resources to other mobile devices. In this work, we
consider an Augmented Execution case study to illustrate our
formalization. In the near feature we plan to extend our study
to the other two approaches.

B. Autonomic Middleware

Autonomic Computing brings together many fields of
computing, with the purpose of creating computing systems
that manage themselves. MAPE-K (Monitor, Analyze, Plan,
Execute, Knowledge) [16] is a reference model for an au-
tonomic control loop. Among available MAPE-K implemen-
tations, the Autonomic Computing Toolkit is a collection
of self-managing autonomic technologies, allowing for the
development of autonomic systems [21]. Also, the ABLE
Toolkit [5] offers autonomic management in the form of a

multi-agent architecture in which the autonomic manager is
an agent or a set of agents. Kinesthetics eXtreme [17], [23] is
an implementation of the MAPE-K loop, whose main purpose
is the addition of autonomic properties to legacy systems.

NAM4J2 is a Java middleware which has been specifically
developed for implementing NAM-based autonomic systems.
A layer stack showing the role of NAM4J in a networked
system is depicted in Fig. 3. Basically, NAM4J runs on top of
the operating system of a physical or virtual device (exploiting,
of course, an appropriate Java Virtual Machine). In its turn, the
middleware executes services provided by functional modules.
Each functional module has an internal feedback loop to direct

Figure 3. NAM4J Layer Stack

its objective-oriented behavior in an autonomic fashion, which
is regulated by a set of local policies. Moreover, the NAM
itself, i.e. the container of all modules, has a feedback loop
for self-managing the overall unit, regulated by a set of global
policies. We refer to Section II for a more complete account
on NAMs, functional modules and services.

C. Code Migration

Code mobility is the capability to dynamically reconfigure,
at runtime, the bindings between the software components of
the application and their physical location within a computer
network [8]. Two possible scenarios exist: (1) strong mobility,
if units are allowed to move their code and execution state to a
different location, and (2) weak mobility, if a unit executing in a
certain location is allowed to dynamically bind to code coming
from a different site (i.e., the execution state is not moved).
In Java, migrating the code segment and the data space of a
thread is feasible, while relocation of the execution state of a
thread to another Java Virtual Machine (JVM) is still debated
in the mobile code community. Cabri et al. [7] provided
strong mobility support to server applications, by extending
the scheduler of the IBM Jikes Research Virtual Machine
(RVM). Unfortunately this approach cannot be applied to
mobile platforms. Regarding Android, for example, the Dalvik
Virtual Machine cannot be replaced by the Jikes RVM. Other
researchers chose to deal with Java strong mobility from the
inside, by modifying the bytecode interpreter to keep track
of the execution state [24], [6]. Neither this approach can
be applied to applications running on mobile devices. On the
iOS platform, strong mobility is unfeasible, due to the SDK
constraints imposed by Apple. NAM4J currently supports only
weak mobility, while strong mobility is work in progress.
Anyway, in our formalization we have already considered both
forms of mobility.

2NAM4J website: http://code.google.com/p/nam4j/

749

D. Mobile and autonomic computing formalizations

In the literature, many linguistic formalisms for modeling
different forms of mobility are proposed. Most of them are
based on π-calculus [22], which in its standard definition
directly allows only the mobility of links between linked
processes (process mobility is enabled in the higher-order
variant of the calculus). Some of such formalisms, namely
Dπ, Djoin, KLAIM and Ambient, are surveyed and compared
in [13].

Regarding autonomic computing, most of the proposals in
the literature still concern full-fledged programming languages
rather than foundational models. Some proposed formalisms,
as e.g. in [3], [4], [25], are inspired by chemical and biological
phenomena. A formalism closer to programming languages,
following a process calculi approach and based on KLAIM,
is SCEL [10]. Although it is equipped with constructs for
dealing with autonomicity, SCEL mainly provides commu-
nication primitives for dealing with ensembles, that are not
relevant for our study and make the operational semantics
much more complex. In more practical terms, SCEL is not
currently equipped with verification tools, which we plan to
use to analyze MCC-based applications.

In this paper we have selected KLAIM as basis for our
formalization because, besides (strong and weak) mobility
mechanisms, it also permits to model autonomic features con-
veniently (as shown in [15]). A combination of both mobility
and autonomicity is necessary for proper modeling of MCC
scenarios. On top of this, KLAIM comes with software tools
that support various forms of analysis.

VII. CONCLUSIONS

We have formalized a framework and some key primitives
to support the design of MCC systems. Specifically, we have
adopted NAM as a conceptual model for MCC and KLAIM as
a formalization language. In particular, we have clarified the
role of policies as means to enact autonomic and context-aware
mobility strategies. Moreover, we have shown our formal
approach at work on a realistic case study, including not only
offloading but also other cost- and reliability-driven strategies.

This work is a first step for some research lines we
envisage. First, we plan to apply existing analysis tools for
verifying MCC systems specified at high level of abstraction.
The choice of KLAIM has the advantage of supporting this
task by means of the SAM tool [20]. The challenge here
is the identification of relevant and desirable properties for
MCC. In particular, the stochastic extension of KLAIM [12],
accepted as input by SAM, permits enriching KLAIM models
with stochastic aspects that enable the evaluation (possibly,
at runtime) of performance and other quantitative parameters.
This would support effective decision making in mobility
strategies. NAM4J could be used to extract information from
execution traces, to determine the appropriate parameters for
the stochastic models.

ACKNOWLEDGEMENTS

This work has been partially sponsored by the EU projects
ASCENS (257414) and QUANTICOL (600708), and by the
Italian MIUR PRIN project CINA (2010LHT4KM).

REFERENCES

[1] M. Amoretti, M. Picone, and F. Zanichelli. Global Ambient Intelligence:
An autonomic approach. In Proc. of PerCom Workshops, pages 842–
847, 2012.

[2] M. Amoretti et al. Towards a formal approach to mobile cloud
computing. Technical report, 2013. Available at http://eprints.imtlucca.
it/id/eprint/1839.

[3] O. Andrei and H. Kirchner. A Higher-Order Graph Calculus for
Autonomic Computing. In Graph Theory, Computational Intelligence
and Thought, volume 5420 of LNCS, pages 15–26. Springer, 2009.

[4] J.-P. Banâtre, Y. Radenac, and P. Fradet. Chemical Specification of
Autonomic Systems. In IASSE, pages 72–79. ISCA, 2004.

[5] J. P. Bigus, D. A. Schlosnagle, J. R.Pilgrim, W. N. Mills III, and
Y. Diao. ABLE: a toolkit for building multiagent autonomic systems.
IBM Systems Journal 41, (3):350–371, 2002.

[6] S. Bouchenak, D. Hagimont, S. Krakowiak, N. De Palma, and F. Boyer.
Experiences Implementing Efficient Java Thread Serialization, Mobility
and Persistence. In I.N.R.I.A., Research report n.4662, December 2002.

[7] G. Cabri, L. Leonardi, and R. Quitadamo. Enabling Java Mobile
Computing on the IBM Jikes Research Virtual Machine. In Proc. of
PPPJ, 2006.

[8] A. Carzaniga, G.P. Picco, and G. Vigna. Is Code Still Moving Around?
Looking Back at a Decade of Code Mobility. In Proc. of ICSE, 2007.

[9] D. Da Silva. Opportunities for Autonomic Behavior in Mobile Cloud
Computing, 2013. Keynote talk at ICAC’13. Available at https://www.
usenix.org/conference/icac13/title-tba-0.

[10] R. De Nicola, G. L. Ferrari, M. Loreti, and R. Pugliese. A Language-
based Approach to Autonomic Computing. In FMCO, volume 7542 of
LNCS, pages 25–48. Springer, 2012.

[11] R. De Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A Kernel
Language for Agents Interaction and Mobility. IEEE Trans. Software
Eng., 24(5):315–330, 1998.

[12] R. De Nicola, J.P. Katoen, D. Latella, M. Loreti, and M. Massink. Model
checking mobile stochastic logic. Theor. Comput. Sci., 382(1):42–70,
2007.

[13] G. L. Ferrari, R. Pugliese, and E. Tuosto. Calculi for Network Aware
Programming. In WOA, pages 23–28. Pitagora Editrice Bologna, 2000.

[14] D. Gelernter. Generative Communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, 1985.

[15] E. Gjondrekaj, M. Loreti, R. Pugliese, and F. Tiezzi. Modeling
adaptation with a tuple-based coordination language. In SAC, pages
1522–1527. ACM, 2012.

[16] IBM. An architectural blueprint for autonomic computing. Technical
report, June 2005. Third edition.

[17] G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kinesthetics eXtreme:
An external infrastructure for monitoring distributed legacy systems. In
Proc. of AMS, pages 22–30, 2003.

[18] D. Kovachev and R. Klamma. Beyond the client-server architectures:
A survey of mobile cloud techniques. In Proc. of ICCC. IEEE, 2012.

[19] K. Kumar and Y-H. Lu. Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy? IEEE Computer, Vol. 43, Issue
4, April 2010.

[20] M. Loreti. SAM: Stochastic Analyser for Mobility, 2010. Available at
http://rap.dsi.unifi.it/SAM/.

[21] B. Melcher and B. Mitchell. Towards an autonomic framework: Self-
configuring network services and developing autonomic applications.
Intel Technology Journal 8, (4):279–290, 2004.

[22] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes,
I and II. Information and Computation, 100(1):1–40, 41–77, 1992.

[23] J. Parekh, G. Kaiser, P. Gross, and G. Valetto. Retrofitting autonomic
capabilities onto legacy systems. Tech. Rep. CUCS-026-03, Columbia
University, 2003.

[24] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill,
R. Jeffers, and T. S. Mitrovich. An Overview of the NOMADS Mobile
Agent System. In ECOOP, 2000.

[25] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson. Pervasive
ecosystems: a coordination model based on semantic chemistry. In
SAC, pages 295–302. ACM, 2012.

750

