Galileo 2016-2017
Project G16_31 "Security protocols for the Cloud-oriented Internet of Things (SeCloT)"

Object: Final Scientific Report
Description of the activity

With godd adherence to the original project plan, the SeCloT research activities have been
organized in the following phases (Mi stands for i-th month):

M1-M3: Study of the state of the art and periodic brainstorming sessions

M3-M9: Design of the novel [oT/Cloud security protocols and mechanisms as well as Cloud-
oriented IoT applications '

M3-M12: Implementation, integration, and validation

M8-M12: Dissemination

Preliminary activity

In January, both teams started to study the state of the art related to secured IoT systems supported
by the Cloud. This preparatory activity served to prepare the first project meeting.

1st Project Meeting (Grenoble 6/2/2017)

The first project meeting took place in Grenoble, at LIG Lab, on Monday the 6th of February. The
Italian team was represented by Michele Amoretti and Francesco Zanichelli (plus Gianluigi Ferrari
connected via Skype).

The French team presented its activities related to [oT and security
» DataTweet project
* scalable access method for LoRA, SIGFOX, 5G MTC

» WalT platform: http://walt.forge.imag.fr

The Italian team illustrated its activities related to cloud, loT, and security
+ CloudAWM
« ADGT
* Distributed AES

Among the topics that could have been developed by joining forces, the teams agreed to start with
the implementation of the OSCAR architecture (presented by the French team in the paper
"OSCAR: Object Security Architecture for the Internet of Things" [1]), because of the OSCAR's
good fit with the OpenStack-based cloud system deployed by the Italian team at its Department
premises. During the meeting, it was also decided to create a GitLab repository for sharing
reference papers, project reports (as wiki documents) and source code.

Web page and GitLab setup
After the first meeting, the Italian team created a web page for the SeCloT project

(http://dsg.ce.unipr.it/seciot), while the French team created the GitLab repository
(https://gitlab.imag.fr/SeCloT/).

OSCAR implementation (part 1)

In the four months following the first project meeting, both teams worked on implementing the
OSCAR security architecture [1] in which the main actor is the Authorization Server (AS), a trusted
entity that
1. stores certificates of Producers (constrained CoAP nodes that provide data in the form of
SIgned and encrypted resource representations);
2. receives subscriptions of Producers for generated resources;
3. generates and provides Access Secrets protecting Producer resource representations.

When a Consumer (CoAP client) requests access to a Producer resource (e.g., a sensor), AS returns
the Access Secret that allows the Consumer to get a resource representation from the Producer. The
Access Secret is a token from which a Producer derives a symmetric encryption key to encrypt a
resource representation. Producers/Consumers and AS use a secure DTLS session to exchange
Access Secrets and certificates.

The implemented AS is based on "Canopus" [2], a basic server written in Go language, and
supportlng DTLS with OpenSSL API v1.1.0e. The following features have been added:
Private Key
* Public key in X.509 Certificate
» Exchange of X.509 certificates
* Certificate Authority for verifying certificates
« MySQL Database for saving Access Secrets, resources and certificates of Concumers
» Server private key and certificate, as well as CA certificate (created with the certtool of
GnuTLS)
* Concurrency {by means of Goroutines)

Extensive tests proved the correctness and robustness of the implemented AS.
2nd Project Meeting (Parma 8/6/2017)

The second project meeting took place in Parma, on Thursday the 8th of June, in the Department of
Engineering and Architecture. The French team was represented by Andrzej Duda.

Both teams presented and discussed the ongoing implementation of the OSCAR architecture. The
French team suggested to implement and test Producer nodes for different resource-constrained
devices. Everybody agreed to write a paper on the OSCAR-related activity. The French team also
presented novel ideas on using blockchain for secured data sharing in IoT environments.

OSCAR implementation (part 2)

After the second meeting, both teams worked to complete the implementation of the OSCAR
security architecture,

In particular, a Producer was implemented, based on "FreeCoAP" {3], thus written in C language. In
such a Producer, DTLS is supported with GnuTLS API (v3.5.3), keys are derived with MDS, data is
encrypted using AES-128 and signatures are performed with SHA256withECDSA. The Producer is
characterized by the following behavior:

+ Setup parameters of DTLS connection and make DTLS handshake

« Send request to server

* Receive response from setrver (the received response is formed by access secret and access

secret ID necessary to derive the key)

« Listen to incoming connections of Consumers
e Derive key and encrypt data
* Send encrypted and signed data

The Producer code was successfully tested on Raspberry Pi 2 devices.

Later, a Consumer based on the "Californium" project [4] was developed in Java language. In such
a Consumer, DTLS is supported with Scandium API, keys are derived with MDS3, data is encrypted
using AES-128 and signatures are performed with SHA256withECDSA. The Consumer is
characterized by the following behavior:

* Setup parameters of DTLS connection and make DTLS handshake

e Send request to server

« Receive response from server (the received response is formed by access secret and access

secret ID necessary to derive the key)
* Send request to Producer
* Receive message from producer, derive key, descrypt data and verify signature

A "many Producers for one Consumer" scenario was implemented and tested.

Finally, a Proxy Server was implemented and deployed on the OpenStack-based cloud installed at
the Department of Engineering and Architecture of the University of Parma. This facility includes
one master server and several

slave servers running a dynamic set of virtual machines (VMs). According to the OSCAR security
architecture, the Proxy Server stores the resources in an encrypted form when the Producers are
highly constrained. When the protected resources are published to the Proxy Server, they need to be
protected with double encryption mechanism [1].

3rd Project Meeting (Grenoble 17/7/2017)

In July, Michele Amoretti spent one whole week in Grenoble, to work with the French team on the
project. The week started with a project meeting, where Michele presented the current status of the
implementation of the OSCAR architecture: Authorization Server, Producer and Consumer
prototypes available in shared repositories.

The French team made some insightful remarks and proposed to use OSCOAP and OSCON for
Producer-Consumer interaction when Producers have to run on constrained devices w1th duty
cycling, in order to overcome the problem of signature generation.

As a novel direction, it was decided to study how to substitute the Authorization Server with a more
robust, distributed solution, in order to avoid the single-point-of-failure issue.

The French team proposed to investigate the use of a blockchain-like ledger, consensus-based.
During the week, the teams produced the first draft of an architecture based on blockchain-like
ledger and group key distribution, denoted as IoTChain, It was also planned to write a paper to be
submitted to the IEEE Wireless Communications and Networking Conference (WCNC), 2018
edition. WCNC is the major IEEE conference on wireless research, technology, and applications.

Definition of the IoT'Chain architecture

IoTChain is a combination of the OSCAR architecture and the ACE authorization framework [5] to
provide an E2E solution for the secure authorized access to loT resources. IoTChain consists of two
components, an authorization blockchain based on the ACE framework and the OSCAR object
security model, extended with a group key scheme. To avoid confusion between OSCAR and ACE
taxonomies, the ACE one is always adopted in IoTChain, Thus, OSCAR's Consumer and Producer
are named Client and Resource Owner, respectively.

The blockchain provides a flexible and trustless way to handle authorization {based on smart
contracts published by resource owners), while OSCAR uses the public ledger to set up multicast
groups for authorized clients.

IoTChain implementation (part 1)

To evaluate the feasibility of the [oTChain architecture, we have implemented the authorization
blockchain on top of a private Ethereum network. We executed several experiments that assess the
performance of different architecture components,

The description of the JoTChain architecture and the preliminary experiments have been
summarized in a paper submitted to the IEEE WCNC 2018 conference. Later, the paper was
accepted for the main track of the conference [6]. It will be presented at the conference - taking
place in Barcelona next April - by Michele Amoretti.

4th Project Meeting (Grenoble 24/11/2017)

On Friday the 4th of November, Michele Amoretti joined the French team for a project meeting at
LIG Lab, in Grenoble. Both teams discussed the ongoing work on the IoTChain implementation,
focusing on the role of Smart Contracts as authorization policy enablers.

IoTChain implementation (part 2)

From Monday the 27th of November to friday the 1st of December, Francesco Medioli joined the
French team in Grenoble, to work on the IoTChain implementation. Two weeks later, Timothy
Claeys joined the Italian team in Parma for the same reason.

With respect to the loTChain architecture described in the WCNC paper [6], the one resulting from
the joint work of the rescarch teams during this last period of the project is characterized by a new
entity, namely the Public Authority (e.g., a municipality). It is a trusted third party that
communicates with the Client and the Resource Owner and is responsible for deploying a smart
contract on the blockchain to store the ethereum address and validate the identity of Clients and
Resource Owners,

The IoTChain authorization flow is characterized by the following phases:

1. The Public Authority publishes the first smart contract (denoted as PA) on the blockchain.
The PA smart contract exposes a function to add/remove an ethereum address of a Client or
a Resource Owner to a structure (mapping) with a modifier. Only the creator of the smart
contract can access these functions.

2. The Resource Owner communicates its resources to the Public Authority and what kind of
the operation the PA has to perform in order to validate an identity of a Client (e.g., “for
these resources, check that the Client lives in that street™).

3. The Client (through the Android App) communicates his/her credentials (e.g., driver license)
to the Public Authority to register the Client's data and the ethereum address.

4. The Public Authority adds, through a function of the smart contract, the ethereum address of
the Client to the mapping. The Public Authority has to know if a certain address can ask or
not for the token and decides whether to add or not a Client. In this phase the PA can add the
ethereum addresses of the validate Resource Owners too.

5. The Resource Owner creates the second smart contract, which can interact with the first
smart contract deployed by the Public Authority through an abstract contract. This contract

has the only purpose to declare the function of the first smart contract, without the
implementation. In this way it may be possible to check if a certain ethereum address is
included into the mapping. The contract checks if the address matches a “true” value.
Moreover, in this phase (if the IoT device was not yet installed when the RO had interacted
with the PA) the RO can add one of its resource for a specific Client.

6. The Client requires the execution of the second smart contract. If the ethereum address of
the sender for a specific resource is included into the mapping, the contract generates an
access token for the Client for the specific resource. Plus, the "LoginAttempt" event of the
contract is triggered.

The ramaining phases are the same of the original IoTChain architecture (as described in the
WCNC paper [6]). The Client requests the encryption keys necessary to decrypt the resources from
the Key Server, after a challenge-response. The Key Server checks, through an event, if the Client’s
token exist in the blockchain (this part is explained in details in the “App & Server” section). Then,
the Client receives a personal key and takes part in the self-healing group key distribution process.
Finally, the Client can download the encrypted resources from the Proxy Server.

5th Project Meeting (Parma 13/12/2017)

At the end of the week he spent in Parma to collaborate in the implementation of the JoTChain
architecture, Timothy Claeys represented the French team at the final project meeting. Here, the
achieved results were discussed and plans for future work were made.

In particular, performance evaluation tests were planned, in order to complete the validation of the
implemented IoTChain architecture and start writing a new paper.

Achieved objectives

With respect to the project plan, all four objectives have been met:

* Energy-efficient mechanisms for data security ~ The OSCAR architecture provides a novel
scheme for JoT security based on data payload protection, in order to guarantee
confidentiality and authentication at several levels, allowing plain or partial access to the
message content based on groups of users,

* Energy-efficient schemes for secure data communication — The IoTChain architecture
enables security of communications suitable for highly constrained nodes.

* Energy-efficient algorithms for secure cloud services — The OSCAR architecture includes
a solution based on double signatures so that the IoT data can be stored in the Cloud in an
encrypted form and only final consumers have access to the cleartext form. Moreover, the
IoTChain architecture provides blockchain-based authorization mechanisms for excluding
malicious actors,

* Integration and implementation of the proposed protocols on experimental platforms. Both
the OSCAR architecture and IoTChain architecture have been implemented and
validated on experimental platforms based on COTS technologies, OpenStack (concerning
cloud services) and Ethereum (concerning the blockchain),

References

[1] M. Vucinic, B. Tourancheau, F., Rousseau, A. Duda, L. Damon, and R. Guizzetti, “OSCAR:
Object Security Architecture for the Internet of Things,” Ad Hoc Networks, vol. 32, pp. 3 — 16,
2015.

[2] Canopus project. [Online]. Available: https://github.com/zubairhamed/canopus
[3] FreeCoAP project. [Online]. Available: https://github.com/keith-cullen/FreeCoAP
[4] Californium project. [Online]. Available: https://eclipse.org/californium/

[5] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,

“Authentication and Authorization for Constrained Environments (ACE),” Internet Engineering
Task Force, Internet-Draft draft-ietf-aceoauth-authz-07, August 2017, work in Progress. [Online].
Available:

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-07

[6] O. Alphand, M. Amoretti, T. Claeys, S. Dall'Asta, A. Duda, G. Ferrari, F. Rousseau, B.
Touranchau, L. Veltri, F. Zanichelli, "[oTChain: A Blockchain Security Architecture for the Internet
of Things", IEEE WCNC 2018, Barcelona, Spain, 15-19 April 2018. Accepted for oral presentation
and publication in the conference proceedings.

Parma, 12/2/2018

Michele Amoretti
Italian Team Coordinator

\J

\ Vi
\ e 7" \ .
\ N\~ £ l Y A
\ V\Jv'\)-__\)él__ Q 4500 D _‘;-J\J\/«J
N

